

RWT330/340 series Torque Transducer

Apollo Park, Ironstone Lane, Wroxton, Banbury, Oxon, UK OX15 6AY

Tel: +44 (0)1869 238400 Fax: +44 (0)1869 238401

Email: info@sensors.co.uk Web: www.sensors.co.uk

Digital RWT330/340 series Torque Transducer

TorqSense Digital RWT330 & 340 series transducers with seperate electronics now offer cost effective, noncontact digital rotary torque measurement, using Surface Acoustic Wave technology, suitable for torque monitoring, testing or controlling drive mechanisms. TorqSense transducers and their technology are particularly appropriate for OEM applications.

Benefits

- Minimal shaft lengthHigh shaft stiffness
- Low inertia High Speed capability because electronics are not fixed on to shaft
- Non contact measurement
- High bandwidth 200% safe mechanical overload
- High accuracy and resolution
- Excellent noise immunity
- Separate digital electronics
- Operates both statically and dynamically
 - Clockwise/anti-clockwise
- Any full scale torque can be specified within Standard range: 1Nm through to 10,000Nm
- Lifetime warranty

Consult factory for ranges greater than 10KNm

High speeds available on request

Technology

TorqSense patented technology is the measurement of the resonant frequency change in 'frequency dependent' surface acoustic wave devices, caused when strain is applied. The signal is coupled via a non-contact RF rotating couple from the shaft to a fixed pick-up.

A separate electronics module enables the resonant frequencies to be measured and offer user selectable features, digital outputs and diagnostics. SAW devices are not affected by magnetic fields.

US Patents: US5585571, US6478584. RWT3243R

Software

TorqView is an easy to use advanced torque monitoring software, available to assist data recording and instrumentation displays that interface with Windows based PCs. See TorqView datasheet.

Features: 3 types of display. Text files compatible with Matlab and Excel. Real time chart plotting.

LabView VIs are available for users to design their own process control applications.

DLLs are also available for users to write their own custom software.

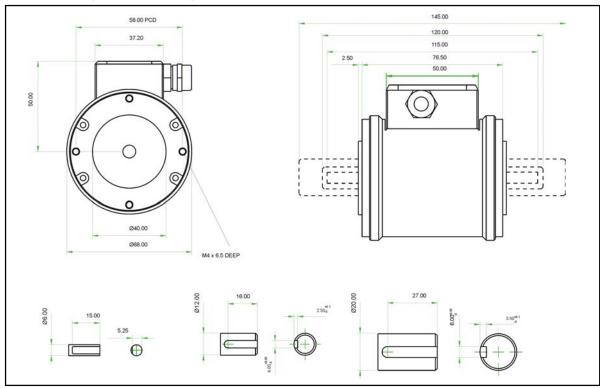
TorqSense RWT330 series transducers offer:

- Fixed voltage or current analog outputs (one for torque and the other for speed or power) for interfacing with legacy analog instrumentation
- BIT Self-diagnostics for letting the manufacturer know that the transducer's torque, speed ratings and calibration due date have not been exceeded.
- Simple 'Fail' output pin
- Sensors to monitor shaft temperature for better compensation and accuracy

Whereas, TorqSense RWT340 series transducers offer:

- 2 x user selectable voltage or current analog outputs (one for torque and the other for speed, power or peak torque) for interfacing with legacy analog instrumentation
- Digital outputs, such as RS232 and USB, for interfacing with modern instrumentation and laptops
- Digital input for configuring transducer via PC
- BIT Self-diagnostics for letting users know data is trustworthy, that the transducer's torque, speed ratings and calibration due date have not been exceeded
- Transducer configuration software to allow user to changes transducer variables
- Ability to connect up to 10 transducers using USB
- Simple 'Fail' output pin
- Sensors to monitor shaft temperature for better compensation and accuracy

RWT330/340 Series Torque Transducers - Data Specification

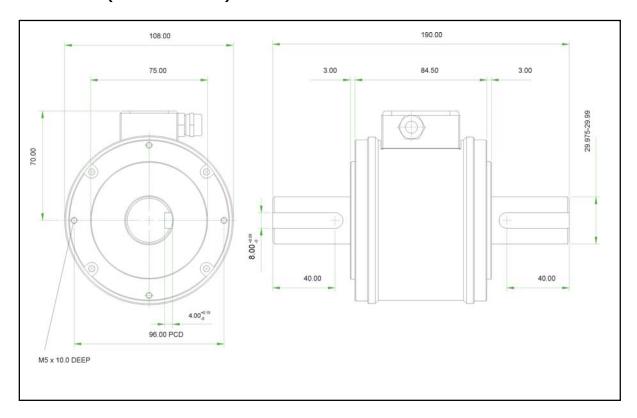

	Parameter	Condition Data							Units			
Communication Communicatio	RWT330/340 Torque m	easurement sys	tem									
2 hebwy				ırface Acous	tic Wave	Resonators	(interrog	ated	by an increme	ental elec	ctronic scannin	g method)
10	Torque range	(See Notes 1 &	0 – 1	0 – 1.:	1	0 – 21	0 - 10)1	0 - 501		0 - 2001	Nm
Shaft size (diameter)	. 3	2 below)		to 0 - 20				to 0 - 2000 to 0 - 10000				
Shaft size (diameter)			<i>[0 -</i>			[0 - 201						[lbfin]
Rotation speed / angle of rotation measurement system Opto switch through slotted disc				to 0 - 20	00] to	0 - 1000]	to 0 - 5	000]	to 0 - 2000	00] to	0 - 100000]	
Measurement method	Shaft size (diameter)		6	12		20	30		50		75	mm
Pulse output signal Direct output signal Direct processing Pulse output direct from opto switch (TTL, SV square wave), output is independent of any analog or digital processing Processing method Techniques Processing method Previot Count Previ	Rotation speed/angle of	f rotation measu	irement	system								
Processing modes run simultaneously and can be applied to either an along of the applied to either are located in the applied to either analog channel or accessed individually via a digital connection. Rotational speed (max) (Perfault mode accessed individually via accessed individually via a digital connection. Rotational speed (max) (See Nete 3) 30,000 20,000 15,000 12,000 9,000 6,000 R.												
Mode 1 (Slow Method) Frequency Count	Direct output signal	Pulse output o	lirect fro	m opto swite	ch (TTL,	5V square v	vave), out	put is	independent	of any a	analog or digita	I processing.
Mode 1 (Slow Method) Frequency Count	Digital Processing	Processing M	lethod		Ü	pdate rate	for anal	og an	d digital ou	tputs		
Frequency Count Mode 2 (Fast Method) D - 2000 RPM RPM / 3 Node 2 (Fast Method) Period Count Peri		Mode 1 (Slow I	(lothod)						•			
Mode 2 (Fast Method) Period Count Node 2 (Fast Method) Period Count P	•							1				Hz
De applied to either analog channel or accessed individually via a digital connection.	Processing modes run	Trequency C	ount									
Period Count Per		Mode 2 (Fast N	1ethod)		0 20	000 DDM			DI	DM / 2		11-
Comparison	be applied to either	Period Cou	ınt		0 - 20	JUU RPM			KI	PM / 3		Hz
Adjust connection. for Analog output)												
a digital connection.					> 200	00 RPM				2		KHz
Temperature Measurement method IR temperature sensor monitoring actual shaft temperature	a digital connection.	for Analog of	ıtput)		, 200	00 10111				_		KIIZ
Temperature	Rotational speed (max)	(See Note 3)	30,000	20,000)	15,000	12,00	0	9,000		6,000	RPM
Measurement method						-,					-,	
Temperature accuracy				JR te	mperatu	re sensor m	onitorina	actua	l shaft temne	rature		
Reference				111 10				Jecuu	. s.a.c compe			°C
temperature, T _{kT} Operating range, ΔΤο -10 to +50 -6 Storage range, ΔΤς -20 to +70 -6 Temperature drift (FS) Max 0.05 %F Specifications	<u> </u>									°C		
Operating range, ΔΤ _S												
Storage range, ΔΤ _S -20 to +70 -20 t			-10 to +50								°C	
Temperature drift (FS) Max										°C		
Linearity		May										%FS/°C
Linearity		I-lux					0.03					701 5/ C
Hysteresis Co.1 Mysteresis Co.1 Myst			+0.25							%FS		
Resolution Q.1										%FS		
Repeatability 0.1												%FS
RWT330 Series Transducers ONLY												%FS
Frequency response		core ONLY					0.1					701 3
Accuracy 20°C, SM (See Note 4) ±0.25 (±0.5 for 2Nm and below) % Note 4) % Note 4		CEIS ONL I					101					Hz
Note 4) RWT340 Series Transducers ONLY		20°C SM (Can				±0.25 (±0.5		and l	aolow)			%FS
RWT340 Series Transducers ONLY	Accuracy					±0.23 (±0.5) IOI ZINIII	anu i	Jelow)			701 3
Frequency response 1620	RWT340 Series Transdu											
Accuracy 20°C, SM (See Note 4) ±1 ±0.7 ±0.5 ±0.4 ±0.25 ±0.25 ±0.25 ±0.25 ±0.25		J. J	1620	810	405	202	10)1	50	25	12	Hz
Digital averaging (See Note 5) 1 2 4 8 16 32 64 128 Analog output Output voltages (Torque/Speed/Power) (RWT340 Series output voltages are user selectable) Load impedance Maximum 1 Output currents (RWT340 Series output currents are user selectable) 4-20mA Loop resistance Should not exceed 400 Digital output (RWT340 Series Transducers ONLY) Output type RS232 (Standard), USB 2.0 full speed 12 Mbps (optional), CANbus (optional) Sampling rate 1.62 ks Power supply Nominal voltage, V _S 12 to 32 (max) Current consumption, I _S 500 (max) Power consumption, W _S 6 Allowed residual ripple of excitation voltage, V _{ripple} (above nominal supply voltage)		20°C SM /Spa										%FS
Digital averaging (See Note 5) 1 2 4 8 16 32 64 128 Analog output Output voltages (Torque/Speed/Power) Load impedance (RWT340 Series output voltages are user selectable) Load impedance (RWT340 Series output voltages are user selectable) Load impedance (RWT340 Series output voltages are user selectable) Load impedance (RWT340 Series output voltages are user selectable) Load impedance (RWT340 Series output currents are user selectable) 4-20mA Loop resistance (RWT340 Series output currents are user selectable) Digital output (RWT340 Series Transducers ONLY) Output type (RS232 (Standard), USB 2.0 full speed 12 Mbps (optional), CANbus (optional) Sampling rate (RWT340 Series Transducers ONLY) Nominal voltage, V _S (Ramax) Current consumption, I _S (Ramax) Current consumption, V _S (Allowed residual ripple of excitation voltage, V _{Tipple} (above nominal supply voltage)	, iccuracy		± 1	±0.7	±0.5	±0.7	-0		0.23	±0.23	_0.23	,01 J
Analog output Output voltages (Torque/Speed/Power) Load impedance Output currents (Torque/Speed/Power) Corque/Speed/Power) Load impedance Output currents (Torque/Speed/Power) Corque/Speed/Power) Corque/Sp	Digital averaging		1	2	4	8	1	6	32	64	128	N
Output voltages (Torque/Speed/Power) Load impedance Output currents (Torque/Speed/Power) Load impedance Output currents (Torque/Speed/Power) Corque/Speed/Power) Corque/Speed/Power) Output currents (Torque/Speed/Power) Corque/Speed/Power) Corque/												
(Torque/Speed/Power) (RWT340 Series output voltages are user selectable) Load impedance Maximum 1 Output currents Options available: 4-20mA, 0-20mA and 12±8mA (Torque/Speed/Power) (RWT340 Series output currents are user selectable) 4-20mA Loop resistance Should not exceed 400 Digital output (RWT340 Series Transducers ONLY) Output type RS232 (Standard), USB 2.0 full speed 12 Mbps (optional), CANbus (optional) Sampling rate 1.62 Power supply Nominal voltage, V _s 12 to 32 (max) Current consumption, I _s 500 (max) Power consumption, W _s 6 Allowed residual ripple of excitation voltage, V _{ripple} (above nominal supply voltage)			Optio	ons available	: ±1 / +5	5 / ±10 / Un	ipolar (RV	/T330	Series defau	ılt setting	is ±5Vdc)	Vdc
Load impedance Maximum 1 Output currents (Torque/Speed/Power) 4-20mA Loop resistance Digital output (RWT340 Series output currents are user selectable) Should not exceed 400 Digital output (RWT340 Series Transducers ONLY) Output type RS232 (Standard), USB 2.0 full speed 12 Mbps (optional), CANbus (optional) Sampling rate Power supply Nominal voltage, V _s Current consumption, I _s Power consumption, V _s Allowed residual ripple of excitation voltage, V _{ripple} (above nominal supply voltage)											, ,	
Output currents (Torque/Speed/Power) 4-20mA Loop resistance Should not exceed 400 Digital output (RWT340 Series Transducers ONLY) Output type RS232 (Standard), USB 2.0 full speed 12 Mbps (optional), CANbus (optional) Sampling rate 1.62 Rewer supply Nominal voltage, V _S Current consumption, I _S Power consumption, V _S Allowed residual ripple of excitation voltage, V _{Tipple} (above nominal supply voltage)									ΚΩ			
(Torque/Speed/Power) (RWT340 Series output currents are user selectable) 4-20mA Loop resistance Should not exceed 400 Digital output (RWT340 Series Transducers ONLY) Output type RS232 (Standard), USB 2.0 full speed 12 Mbps (optional), CANbus (optional) Sampling rate 1.62 ke Power supply Nominal voltage, V _S 12 to 32 (max) Current consumption, I _S 500 (max) Power consumption, W _S 6 Allowed residual ripple of excitation voltage, V _{ripple} (above nominal supply voltage)									mA			
4-20mA Loop resistance Should not exceed 400 Digital output (RWT340 Series Transducers ONLY) Output type RS232 (Standard), USB 2.0 full speed 12 Mbps (optional), CANbus (optional) Sampling rate 1.62 ks Power supply Nominal voltage, V _S 12 to 32 (max) Current consumption, I _S 500 (max) n Power consumption, W _S 6 Allowed residual ripple of excitation voltage, V _{ripple} (above nominal supply voltage)												
Digital output (RWT340 Series Transducers ONLY) Output type RS232 (Standard), USB 2.0 full speed 12 Mbps (optional), CANbus (optional) Sampling rate 1.62 ks Power supply Nominal voltage, V _S 12 to 32 (max) Current consumption, I _S 500 (max) n Power consumption, W _S 6 Allowed residual ripple of excitation voltage, V _{ripple} (above nominal supply voltage)								Ω				
Output type RS232 (Standard), USB 2.0 full speed 12 Mbps (optional), CANbus (optional) Sampling rate 1.62 ks Power supply Nominal voltage, V _S 12 to 32 (max) Current consumption, I _S 500 (max) n Power consumption, W _S 6 Allowed residual ripple of excitation voltage, V _{ripple} (above nominal supply voltage)		Series Transdu	cers ON	LY)		Jilouic		Ju 10	-			1.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					lard). US	B 2.0 full sn	eed 12 M	bps (d	optional). CAN	Vbus (on	tional)	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				(500110				((op		ksps
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		'										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		12 to 32 (may)						V				
Power consumption, W_S 6 Note that the following state of the second state of the s								mA				
Allowed residual ripple of excitation voltage, V _{ripple} (above nominal supply voltage)									W			
excitation voltage, V _{ripple} (above nominal supply voltage)												
						(ahovo por		dy yo	ltage)			mVp-p
		tihility				(above 1101	ııııaı sup	ny vo	rage)			
EMC compatibility EN 61326:2006							61226.24	106				

- Note 1. Any torque/FSD is possible between ranges please specify max rated torque.
- Note 2. Max rated torque should not be exceeded.
- Note 3. Please consult factory for applications requiring rotational speeds that exceed maximum figures given.

 Transducers fitted for IP65 will have running speeds considerably reduced, increased drag torque and accuracy can be affected.
- Note 4. SM Static Mode. Dynamic values will depend upon user application and has to be adjusted accordingly.
- Note 5. Digital averaging can be configured by user to optimise accuracy/frequency response for specific user applications. Digital averaging default setting is N=16. For details see User Manual.

RWT330/340 Series Torque Transducers

Dimensions (1Nm to 100Nm)

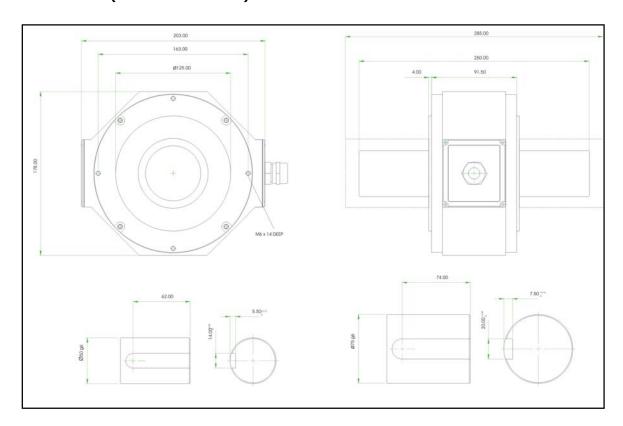


Parameter						D	ata						Units
Torque (Max)	1	2.5	3.9	6	8.5	13	17.5	20	30	55	85	100	Nm
Shaft Code	CF	DA	DF	DB	DC	DG	DD	DE	EB	EC	ED	EE	
Shaft Size (Diameter)	6		12 20							mm			
Torsional Stiffness	0.23	1.28	1.3	1.32	1.6	1.7	1.8	1.9	4.1	6.4	8.1	9.2	KNm/rad
Mass moment of inertia, L _V	0.45	5.96	6.00	6.04	6.13	6.18	6.24	6.42	22.9	23.9	25.4	27.2	*10 ⁻⁶ kg·m²
Max measurable load limit		120 (of rated torque)							%				
Static safe load breaking		200 (of rated torque)						%					
Shaft weight, approx	0.03	0.14	0.14	0.14	0.14	0.15	0.15	0.15	0.36	0.37	0.40	0.41	kg
Transducer with shaft weight, approx (1 dp)	0.5	0.6	0.6	0.6	0.6	0.7	0.7	0.7	0.9	0.9	0.9	0.9	kg

Data parameters measured at $+20^{\circ}$ C Sensor Technology Ltd reserves the right to change specification and dimensions without notice.

RWT330/340 Series Torque Transducers

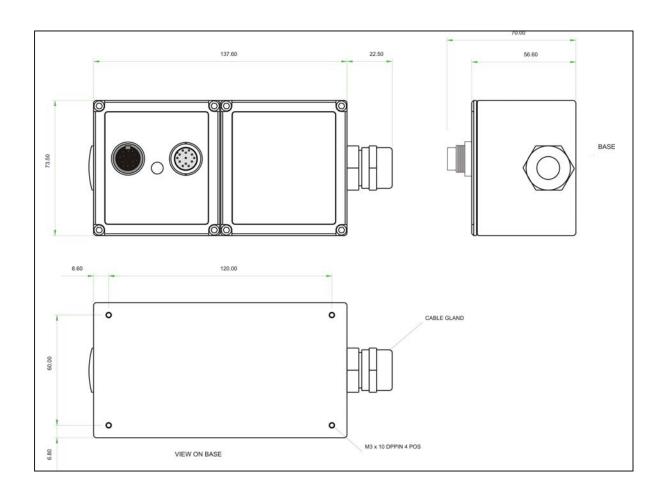
Dimensions (101Nm to 500Nm)



Parameter			Units						
Machanian Drawa	ubi o o								
Mechanical Proper		225	265	250	F00	Neo			
Torque (Max)	175		265	350	500	Nm			
Shaft Code	FA	FB	FC	FD	FE				
Shaft Size			30			mm			
(Diameter)									
Torsional stiffness	32.9	35.6	37.2	37.9	39.8	kNm/rad			
Mass moment of	138.9	143.1	147.7	151.9	174.2	*10 ⁻⁶ kg·m ²			
inertia									
Max measurable		1	20 (of rated tor	aue)		%			
load limit			`	. ,					
Static safe load		2	00 (of rated tor	aue)		%			
breaking		_	(0	-17					
Shaft weight,	1.1	1.1	1.1	1.2	1.2	kg			
approx									
Transducer with	2.3	2.3	2.3	2.4	2.4	kg			
shaft weight,									
approx (1 dp)									

Data parameters measured at +20°C Sensor Technology Ltd reserves the right to change specification and dimensions without notice.

RWT330/340 Series Torque Transducers


Dimensions (501Nm to 10000Nm)

Parameter		Data							Units	
Mechanical Properties										
								1	1	
Torque (Max)	650	850	1100	1350	2000	3000	4000	6000	10000	Nm
Shaft Code	GE	GA	GB	GC	GD	HA	HB	HC	HF	
Shaft Size			50					75		mm
(Diameter)										
Torsional Stiffness	TBC	TBC	199.2	TBC	214.1	TBC	TBC	914.4	945.5	kNm/rad
Mass moment of	TBC	TBC	1330	TBC	1497	TBC	TBC	7932.7	9407.1	×10 ⁻⁶
inertia										kg·m²
Max measurable					120 (of rat	ed torque)			%
load limit										
Static safe load					200 (of rat	ed torque)			%
breaking										
Shaft weight,	TBC	TBC	3.9	TBC	4.1	TBC	TBC	10.2	10.6	kg
approx										_
Transducer with	TBC	TBC	7.1	TBC	7.3	TBC	TBC	13.4	13.8	kg
shaft weight,										
approx										

Data parameters measured at +20°C Sensor Technology Ltd reserves the right to change specification and dimensions without notice.

RWT330/340 Series Electronics Module

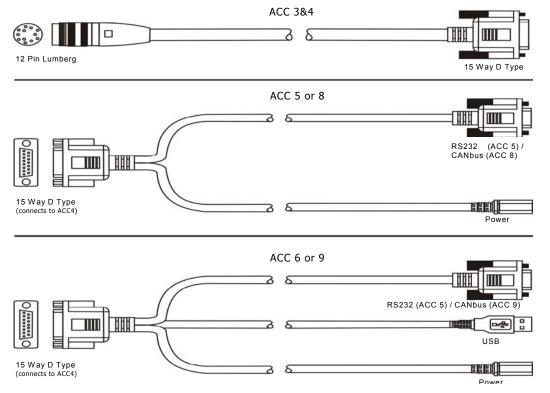
RWT330/340 Series Torque Transducers - Standard Range

• – Standard feature ♦ – Optional feature

● — Standard feature ◆ — Optional feature RWT330/340 Option Remarks								
		ries	Code	Keillaiks				
Torque, Speed, Power Outputs	RWT330	RWT340	Couc					
Torque only	330	340						
Torque & Speed (60 pulses/rev)	331			User to specify RPM/FSD when ordering				
Torque & Power (60 pulses/rev)	333			User to specify Power/FSD when ordering				
Torque & Speed (60 pulses/rev) or Power		341		Outputs are user selectable				
Standard features								
Keyed Shaft Ends	•	•	K	1Nm will have flats				
Voltage output ±5v FSD (Fixed)	•		В					
Voltage outputs from ±1v to ±10v FSD and unipolar (Variable)		•		Output is user selectable				
RS232 output		•						
Torque Averaging & Torque Peak		•						
Self Diagnostics	•	•						
Internal temperature measurement	•	•		Value available on RWT340 series only				
Deep grooved shielded bearings with oil lubrication	•	•		,				
Ingress Protection (IP) 54	•	•						
Link Cable (2m)	•	•		From sensor head to electronics module				
Optional features								
Plain Shaft Ends	*	*	Р	Shaft length will be longer than keyed end shafts – consult factory for length				
Voltage output ±1v FSD (Fixed)	♦		Α	In place of Option B				
Voltage output ±10v FSD (Fixed)	♦		С	In place of Option B				
Unipolar voltages (Fixed)	\$		U	In place of Option B. User to specify range/scale when ordering				
Current output 0-20mA (Fixed)	♦		D	In place of Voltage output options				
Current output 4-20mA (Fixed)	♦		E	In place of Voltage output options				
Current output 12±8mA (Fixed)	♦		V	In place of Voltage output options				
Current output 0-20mA, 4-20mA & 12±8mA (Variable)		*	F	Current output is user selectable and in place of Voltage output. However user can reselect a Voltage output, if required. (Note 6)				
USB2.0 full speed 12 Mbps Digital output		♦	G					
CANbus output		♦	Н	In place of RS232				
High Speed Bearings (See Note 7 below)	♦	♦	J					
Sealed Bearings	♦	♦	S					
Ingress Protection (IP) 65 –for sensor and electronics (See Note 8 below)	♦	♦	L	Consult factory for maximum speed allowance				
Ingress Protection (IP) 65 – Cavity 'D' connectors in lead b/w sensor & electronics	\$	*	М	эреси аномансе				
Cavity 'D' connectors in lead b/w sensor & electronics	♦	♦	N					
Link Cable (>2m)	♦	♦	R	Consult factory for length				

Note 6. 2 x analog channels available. Default settings are Channel 1 (voltage/current) – torque. Channel 2 (voltage/current) – speed or power, if ordered.

Note 7. At very high speeds, for better balance the factory recommend plain or splined shafts.


Note 8. Transducers fitted for IP65 will have running speeds considerably reduced, increased drag torque and accuracy can be affected.

RWT330/340 Series Torque Transducers – Connector and Lead Options

KW1990/940 Series Torque Trans	RWT330/340		Option	Remarks/Purpose		
		ries	Code			
Connectors & Leads	RWT330	RWT340				
Analog Connector 12 Pin Lumberg (female)	♦	♦	ACC 1	For user to self wire		
Digital Connector 12 Pin Lumberg (male)		♦	ACC 2	For user to self wire		
Analog Lead (Length 2.5m) 12 Pin Lumberg (female) to 15 way 'D' type connector (female)	♦	♦	ACC 3	For connecting RWT to user's system via 15 pin 'D' connector		
Digital Lead (Length 2.5m) 12 Pin Lumberg (male) to 15 way 'D' type connector (male)		♦	ACC 4	For connecting RWT to user's system via 15 pin 'D' connector		
Digital Lead Adapter (Length 1m) 15 Way 'D' type (female) to RS232 and Power Connectors		*	ACC 5	For connecting RWT to PC via RS232 [Also needs Digital Lead (ACC4) to connect to RWT]		
Digital Lead Adapter (Length 1m) 15 Way 'D' type (female) to RS232, USB and Power Connectors		*	ACC 6	For connecting RWT to PC via USB (Option G) or RS232 [Also needs Digital Lead (ACC4) to connect to RWT]		
Digital Lead Adapter (Length 1m) 15 Way 'D' type (female) to CANbus and Power Connectors		*	ACC 8	For connecting RWT to PC via CANbus (Option H) [Also needs Digital Lead (ACC4) to connect to RWT]		
Digital Lead Adapter (Length 1m) 15 Way 'D' type (female) to CANbus, USB and Power Connectors		*	ACC 9	For connecting RWT to PC via USB (Option G) or CANbus (Option H) [Also needs Digital Lead (ACC4) to connect to RWT]		

RWT330/340 Series Torque Transducers – Additional related products

	Code	Remarks/Purpose
Transducer Display ETD	ETD	Display readout
AC Mains Adapter Power Supply	PSU 1	For providing 12-32Vdc
Transducer Signal Breakout Unit	SBU 2	
TorgView	TV	Torque Monitoring Software

Data parameters measured at +20°C

When you order a Torque Transducer please note that any torque/FSD is possible between ranges — please specify rated torque and options using the following format:

For example: RWT	331 - 15Nm -	K-CL	A 'basic' transducer with torque and speed outputs, rated and calibrated to 15Nm FSD with keyed ends, ±10v and IP65 protection.		
Your transducer requirement: RWT					
Max speed (if applicable)		RPM	I		
Connector & Lead options		(if applicable	e) See over		
Additional related products		(if applicable) See over			

Glossary of terms and definitions used in this datasheet

- **Surface Acoustic Wave (SAW)** An acoustic wave travelling along the surface of a material having some elasticity, with amplitude that typically decays exponentially with the depth of the substrate.
- Strain dependent SAW resonators A type of elastic SAW device, which changes its resonant properties
 when it is subjected to axial strain/compression. TorqSense uses this principle, which is protected by a
 number of patents.
- Incremental Electronic Scan (IES) The most successful and precise method for interrogating strain
 dependent SAW resonators. The IES interrogation method uses a processor controlled frequency synthesiser
 to excite the SAW resonators over a defined range of frequencies and measure the reflected signal.
 TordSense uses this patented method.
- **Resolution of the IES method** The minimum measurable number corresponding to the stress/strain sensitive resonance point of the SAW resonator. The value is limited by following the factors:
 - frequency resolution of the synthesiser, which is 1000 times greater then overall resolution of the system.
 - relationship between frequency response and resolution. Increments of the resolution will proportionally
 decrease the system's frequency response. TorqSense systems are optimised for the best performance
 that suits most applications. However, on the RWT340 series models customers do have the capability
 to adjust the system performance.
- **Frequency response of the IES method** The measure of the TorqSense system's response at the output to a signal of varying frequency at its input. The frequency response is typically characterised by the magnitude of the system's response, measured in dB. There are two ways of characterising the system's frequency response:
 - 0.1dB frequency range, where the output magnitude of the signal is different to the input magnitude of the signal by not more then 0.1dB (practically absolutely identical).
 - 3dB frequency range, where the output magnitude of the signal is 0.707 of the input signal. This is a common standard for most applications, unless it specifically says otherwise. This standard is also used to characterise the TorqSense system's frequency response.
- **Accuracy** The degree of conformity of a measured or calculated quantity, which will show the same or similar results. Accuracy of the overall TorqSense system is limited by the combined error of several factors such as linearity, hysteresis, temperature drifts and other parameters affecting measurements. If errors in the system are known or can be estimated, an overall error or uncertainty of measurement can be calculated.
- **Digital averaging** The application of algorithms to reduce white noise. In any electronic system, electronic white noise is mixed with the signal and this noise usually limits the accuracy. To reduce the influence of white noise and increase the accuracy of the system different averaging algorithms can be applied. In the TorqSense system a flying digital averaging technique is applied to reduce the white noise commensurate with the level of accuracy required. However, as any averaging algorithm works as a low pass filter, the more averaging that is applied the lower the frequency response. Therefore, each Torqsense system should be optimised to the customer's requirements by choosing the right combination of accuracy/frequency response. Please see relevant part of the Datasheet and User Manual.